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Abstract

We extend the VC theory of statistical learning to data dependent spaces of classifiers.
This theory can be viewed as a decomposition of classifier design into two components;
the first component is a restriction to a data dependent hypothesis class and the second
is empirical risk minimization within that class. We define a measure of complexity for
data dependent hypothesis classes and provide data dependent versions of bounds on error
deviance and estimation error. We also provide a structural risk minimization procedure
over data dependent hierarchies and prove consistency. We use this theory to provide a
framework for studying the trade-offs between performance and computational complexity
in classifier design. As a consequence we obtain a new family of classifiers with dimension
independent performance bounds and efficient learning procedures.

Keywords: Computational Learning Theory, Empirical Process Theory, Classification,
Shatter Coefficient, Structural Risk Minimization

1. Introduction

Vapnik motivated his development of support vector machines as a kind of structural risk
minimization. However, the corresponding class sequence is data dependent and so Vapnik’s
theory of structural risk minimization does not apply. To resolve this issue, Shawe-Taylor
et al. (1998) have developed a theory of structural risk minimization over data depen-
dent hierarchies which gives performance guarantees for support vector machines (see also
Shawe-Taylor & Cristianini, 2000). In addition, the work on data dependent complex-
ity regularization of Buescher and Kumar (1996), the posterior bounds of Freund (1998),
the conditional bounds of Devroye (1988), and the work on data dependent penalties of
Koltchinskii et al. (2000), Koltchinskii (2001), Boucheron et al. (2000), and Bartlett et al.
(2000) have a similar goal.
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Devroye (1988) developed performance bounds for data dependent hypothesis classes in
a similar spirit to those presented here. However Devroye’s approach provides conditional
bounds whereas the approach taken here more closely resembles the VC framework devel-
oped by Vapnik. Recently Gat (1999) proved a performance bound for the perceptron that
extended the VC theorem to the case of data dependent classes of classifiers. This bound
uses a counting complexity instead of a shattering complexity for the data dependent class.
In this paper we show that Gat’s result can be extended in terms of a shatter coefficient
for data dependent classes. We build on this result to construct a new framework for learn-
ing with data dependent hypothesis classes. Although the framework of Shawe-Taylor et
al. may be more general, its exact relationship to the framework developed here is not
clear. At a minimum the two frameworks appear to differ in the ease with which they
can be applied to particular learning paradigms. For example, our framework has not yet
provided performance guarantees for support vector machines. However, it has facilitated
the discovery of new families of classifiers that possess dimension independent performance
guarantees for empirical risk minimization.

We contrast our framework with the VC framework. In the VC framework the gener-
alization error can be decomposed into two components, the approximation error A which
quantifies the lack of optimality introduced by our choice of hypothesis class, and the es-
timation error £ which quantifies the lack of optimality of empirical error minimization
due to finite sample size. For classes with finite VC dimension the celebrated VC theorem
provides a distribution independent bound on E that goes to zero as the number of train-
ing samples n goes to infinity. Control on the approximation error is provided through a
structural risk minimization (SRM) learning procedure that is proved to be consistent for
an infinite sequence of classes with finite VC dimension.

In our framework classifier design is decomposed into two components; the first compo-
nent is the restriction to the data dependent hypothesis class and the second is empirical
risk minimization within that class. We define data dependent versions of approximation
error Ap and estimation Ep error in the obvious way. We provide a VC-like theorem that
gives bounds on Ep in terms of a shatter coefficient for data dependent classes. Based
on Vapnik’s construction we also provide a structural risk minimization procedure over
data dependent hierarchies and prove consistency. When the data dependent hypothesis
class is obtained by restricting a traditional class through a data dependency rule the data
dependent approximation error Ap splits into

Ap =A+ Epp

where A is the approximation error for the traditional class and Epp is the data dependency
error. Consequently the analysis of approximation error is similar to that for traditional
classifiers, except for the data dependency error term. We have just begun the study of
this random variable. For example we show that when the data dependency is symmetric
in its dependence on the n-sample the infinite sample limit of this random variable is a
constant. At present we do not know general conditions on the data dependency that allow
this constant to be computed, and in particular when it is zero. However, for the struc-
tural risk minimization over multi-sphere classifiers described in Section 5.2 this constant is
zero. In this case we have also shown that the infinite sample limit of the data dependent
approximation error is zero.
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We also wish to address the computational requirements of the learning procedure. De-
spite the performance guarantees provided by the VC theory, empirical error minimization is
computationally intractable for nearly all nontrivial hypothesis classes. One of the strengths
of our framework is that it allows us to explore trade-offs between generalization error and
computational requirements through the choice of data dependency. For example, it allows
us to modify a traditional classifier to obtain a family of classifiers through various data
dependencies, and to quantify the performance and computational requirements over this
family with a greater degree of flexibility than we have seen before. Among the families
considered here are classifiers with dimension independent performance bounds that may
benefit from kernel mappings to high dimensions like those used in support vector machines.

This paper is organized as follows. We prove uniform convergence of empirical processes
over data dependent classes as an extension of Gat’s theorem. Specific data dependent
classes are introduced and their computational and structural complexity analyzed. A
structural risk minimization procedure is described and a consistency theorem proven. The
structural risk minimization procedure is demonstrated on a specific family of spherical
classifiers and conditions for consistency with the Bayes error are provided. Finally we
describe a framework for analyzing the trade-offs between computation and performance as
a function of the data dependency and apply it to the family of spherical classifiers.

2. Uniform convergence of empirical processes over data dependent
classes

Let Z denote a metric space with its Borel o-algebra and a Borel probability measure
1. We let Z, denote the n-fold product of Z with itself with product o-algebra and let
Pz, = p™* denote the n-fold product of the measure . We denote n independent samples
{zn(i),i = 1,..,n} as z, = (2p(1),..,2n(n)) € Z,. In this paper we consider functions
f+Z —{0,1}. We define F,, to be a class of such functions, where members of this class
are determined through application of a data dependency rule to n-samples. For example,
in Section 4.2 we consider functions that dichotomize R? with a sphere where the data
dependency rule forces the sphere to be centered at one of the n data points. Therefore,
Fn is a class of binary functions on (Z,, 7). We define a data dependent class F = {F,}
to be a collection of classes F,,.

We now assume some structure concerning the classes’ data dependency and the classes’
description as a parametric family. We denote the class F restricted to the m-sample z,
by F,,. We assume we can describe this class in parametric form through some parameter
space Yy, not necessarily a product space, such that each function is f,, ., (z) for some
choice of y, € Y, and each choice of y,, gives a function in the class. Then the whole data
dependent class on n samples can be described by a single function Z,, (Yn, 2n, 2) = fyn,2, (2)-
Recall that a Polish space is a complete separable metric space and a Suslin space is a Borel
measurable image of a Polish space. We say that the data dependent class F,, is image
admissible Suslin if there exists a Suslin parameter space Y,, and a z, parameterized family
of maps T, : Y, = F,, such that the evaluation function

Z; Yo X Zy x Z — {0,1}
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defined by E,,(yn, zn, 2) = (T%, (yn))(z) is jointly measurable in (y,, z,, z) with the product
o-algebra of the Borel sets of Y,, and Z,,1. The inclusion of measurability considerations
for the results in this section goes through in much the same way as for the VC' theorem
as presented by Dudley (1999). On the other hand in the proof of Theorem 15 in Section
5.1.2 measurability is crucial and so we consider it explicitly then.

There is a one to one mapping between functions f : Z — {0, 1} and their indicator sets
I(f) ={z: f(z) = 1}. Throughout this paper we make this identification regularly without
comment. In particular we identify u(f) = u(Z(f)).

Definition 1 For n < m define Ny(zm, F) to be the number of distinct dichotomies of the
m points z,, generated as the functions vary over the union of the data dependent classes
determined by all subsets of zy, containing n points. That is, let It = {z: f(2) = 1} denote
the set where the function is equal to one. Then Ny (2m,F) is the number of different sets
n

H{zm 1),y zm(m)} N If 2 f € Fup,ywn C 2}

where wy, C 2y, means that {wy(i),i = 1,..,n} C {2y(4),7 = 1,..,m}. The shatter coeffi-
cient for a data dependent class F is defined as

Snm(F) = sup Ny (2m, F).

We begin by citing Gat’s (1999) observation that Vapnik’s basic lemma regarding ghost
samples still applies for data dependent classes. Let z, denote the n-sample and z,, the
ghost sample. Denote z,,, = (zn, 2n,) With m = n + ng. We write the empirical means

i) = () = - 3 Flen)
i=1

and

Lemma 2 (Gat)

Pz, ( sup |u(f) — pa(f)] > 6) < 2Pz, (fSUP |\2(f) = i (f)] > € — ! )

fE€Fzen m-n

Zn

Proof Just follow Vapnik’s proof (Vapnik, 1998, page 132) and observe that the relevant
n is ne and the data dependency makes no difference. |

Now we state and prove our main theorem for data dependent classes.

Theorem 3 For any m > n,

1 )—162

Pz, <fSL}p () = i (f)] > 6) < 28,/ (F)e2e nt
EFzn
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Proof Gat (1999) proved the version of this theorem that counted the number of functions
in {Fy,,w, C z,} when m = 2n. We show this proof can generate bounds in terms of the
shatter coefficient for the data dependent class. Consider

P ( sup |fia(f) — pa(f)| > é)

fej:ﬂn
min Let ¥ denote the set of permutations of the integers (1,2,...,m) and
use the same designation for the set of permutations induced on the m sample z,,. Since
Pz, is invariant under ¥, for any permutation o

where é = € —

m

fE€EFen f€Fs(am)y

Pz, ( sup |fi2(f) — i (f)] > 6’) =Pz, ( SUD | fo(z)s (F) = Bo(sp)s (F)] > é)

where o(z,) = (0(2m)1,0(2m)2) and o(zy,)1 is of length n.
Place the uniform probability distribution on . It then follows that

P2z (fselép |2(f) = pa(f)] > 6') =Pz, ( SUP  |fig (200 (F) = Bo(z): ()] > é)

FE€Fo(zmn

= / <7’zzm( SUP |l (2 )y (F) = Blo(om)y (F)] > €| Zm)) dPz,, (1)

F€Foemn

but for fixed Z,,

Ps\z,, ( SUP  |fho(zn)y (F) = fa(zm)y ()] > €| Zm> <
fe}—o'(zm)l

Sn/m(j:) sup PE|Zm (
fEerE]:o(Zm)l

ﬂa(zm)g(f) - ﬂa(zmh(f)‘ > € ‘ Zm) . (2)

To bound
PE|Zm (‘ﬂa(zm)g(f) - /lo'(zm)l(f)‘ > € ‘ Zm)

we map to the hypergeometric distribution in the following fashion. For f fixed, let [ be
the number of indices such that f(z,(i)) = 1. For fixed o let k denote the number of
indices ¢ = 1,..,n such that f(o(zm,)1(¢)) = 1. For each combination of %k indices chosen
from [ and n — k chosen from m — [, there are n!(m — n)! permutations. The number of
combinations which obtain % indices from the [ and n — k£ from the m —[ is (,lc) (zl:li) so the
number of corresponding permutations is ( ,lc) (:Ln:,i)n'(m —n)!. Consequently, the fraction of
permutations with & ones in the first » indices and the remaining [ — k ones in the remaining

m — n indices is
() G ntim = m)t () (75

m! G
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and so is distributed like the hypergeometric random variable K(n,m,l) of how many
defectives are selected when n items are randomly selected without replacement from a
population of m items of which [ are defective. For each of these permutations

. . k=K m _n
frotemn () = otemia(F) = 5 = o0 = iy (k: E>'
Consequently,
. . , In n(m—mn),
Psiz,n <|Mo(zm)2(f) — Lo (o) ()] > €| Zm> = Pk (nmi) (‘k -2/ > %Q ‘

Applying Serfling’s result (Serfling, 1974) on concentration of sampling without replacement
to the hypergeometric distribution

k l _ nm
,PI((n7m7l) <‘ ‘ > t) S e m{n+1t2

n m

with ¢t = mrgné we obtain

(m=n)2 ;2

P12, (1Rene(F) = fintepy () > €| Zn) < e 20

We use the crude lower bound % ml_n, losing almost a factor of 2 in exponent, to

obtain the simpler formula

~ ~ , —(Lp_1 y-1g2
P20 (1012 (1) = oty ()] > €] Zm) < G,

Consequently, from Equation 2 we obtain

1
m—n+1 2

3
3

|
3

~ ~ , (1 —1¢2
PE\Zm ( sup ‘:“U(th(f) - Na(zm)l(f)‘ > 6) < Sn/m(j:)e o) (3)
F€F o (em)y

1
m-n

1 1\t 1 1 !
—(—-i— ) 6'2§2e—(—+ ) €2
no o m-n no m-n

so that combining with the bound from Lemma 2 and Equation 1, we obtain

Substituting é = € — we bound

1

Pz, ( sup ‘,u(f) — /l(f)‘ > e) < 2Sn/m(.7:)€2667(;+m7n)_152
feF.,

and the proof is finished.
|

Before we proceed, let us mention that the data dependent version of Vapnik and Cher-
vonenkis’ lemma inducing bounds on estimation error from bounds on error deviance (as
stated by Devroye et al., 1996) also holds. The proof is the same as the data independent
version.

Lemma 4 Let f(z,) = arg mingcr, fi(f) denote the empirical mean minimizer in the data
dependent class F, and let i*(z,) = infrecr, p(f) be the data dependent optimum. Then

p(f(zn)) = 1*(2n) <2 sup |a(f) — u(f)]
fEF.

Zn
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3. Classification

We now consider classification. Let Z = (X,Y) with ¥ = {0,1} where X is a metric
space with Borel o-algebra inducing a o-algebra on Z in the obvious way. We assume
additionally that X is Polish so that Z is also Polish and so Suslin. Again we consider
independent samples so all n-sample probability measures will be the product measures.
Let the Borel probability measure be decomposed as

u(f) = m (f(0)p(1) + o (f(-,0))p(0)
for two Borel probability measures p; and pg where we use the notation p(1) = p(y = 1)

and p(0) = p(y = 0) for the probability on ¥ = {0,1}. We require that each function
correspond to a classifier hypothesis. That is, each function f : Z — {0, 1} satisfies

’

F@,y) = Iipay=y)
for some classifier f : X — {0,1}. Equivalently f must satisfy

fl@,1) + f(=,0)=1
and so is determined by some classifier f : X — {0,1} by f(z) = f(x, 1). For any class C
of classifiers f : X — {0,1} let C be the class of functions defined by f(z,1) = f(z) and

f(z,0) =1 — f(x). The decomposition of the measure combined with the constraints for
classifier hypotheses determines the formula for generalization error

e(f) = p(l = f) = (1= m(f)p(1) + po(f)p(0). (4)
Now we define

€*(z,) = inf e(f)

fE€Fem
to be the optimal generalization error in the data dependent class. Also define

e*(200) = limsupe*(z,)
n—00
to be its infinite sample limit. Let B denote the Borel measurable sets. Define
eg = inf e
5= inf (f)

to be the Bayes error.

4. Data Dependent Classes for Classification

In this section we introduce and analyze some specific data dependent hypothesis classes for
classification. The first is a class we call simple linear classifiers, and the second is a family
of classes that we refer to collectively as multi-sphere classifiers (see Cannon and Cowen,
2000; Marchette and Priebe, 2001; Priebe, DeVinney, and Marchette, 2001 for related
work). In each case we derive bounds on their shatter coefficients and establish hardness
results for the computational complexity of empirical risk minimization. Throughout this
section we let Z = (X,Y) with X Polish so that Z is also Polish and so Suslin. Also, our
data dependent classes C are defined through function classes C of functions X — {0,1} as
described in the previous section. With this definition the shatter coefficient for C is the
same as for C.
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4.1 Simple linear classifiers

Here X = R? with metric determined by the usual inner product. Let the data dependent
class C,, be the subset of linear classifiers whose orientations are determined by the pairwise
differences between samples, that is

Cop ={f, 1= [ f(2) = H ((n(i) = 2n(7)) - 2 +b) 1,5 < n,b e R}

where H is the heaviside function. The shatter coefficient is determined as follows. Recall
that in the determination of the shatter coefficient we need to include a ghost sample.

Consider linear classifiers whose orientations are determined by a single sample pair
(x(),2(7)). The class of sets {z : (z(i) — z(j)) - + b < 0} is ordered by subset relation
as we vary the threshold b and so has VC dimension equal to one (Devroye et al., 1996),
and so the number of subsets of the 2n points is at most 2(2n 4+ 1). For any sample of
size 2n we find at most (22") = n(2n — 1) unique sample pairs, so we can bound S, /2, (C)
by 8n3 — 2n. Since each function in C,, is in Cy,, , Spjan(C) < Szp/n(C) < 8n — 2n.
Note that for this simple class the shatter coefficient is independent of dimension. This
class also admits tractable learning algorithms in that empirical risk minimization over C,,
can be solved in polynomial time. To see this consider the run time of the brute force
algorithm which examines all O(n?) sample pairs and determines the optimal threshold for
each. Since it takes O(nd+ nlogn) to determine the threshold for each pair the overall run
time is O(n®(d + logn)).

4.2 Multi-sphere classifiers

For the computational considerations we let X = R? with metric determined by the usual
inner product. Let z,, be the ordered subset of z, with y = 1 where the ordering is induced
from z,, and the random variable n; denotes its size. We define the single sphere data
dependent class as

Con ={f: o) = H(r = [lo —n, (D) i <mayr e Ry}

That is, x is assigned the label 1 if it falls in a closed ball B(zy,,(i),r) € X of radius r
centered at one of the data samples with label y = 1, and 0 otherwise. Determination of
the shatter coefficient parallels the procedure above. The class of sets {B(z,r),r > 0}, is
ordered by subset relation and so has V'C' dimension equal to one, and so the number of
subsets of the 2n — 1 remaining points (which include the ghost sample) is at most 2n. Now,
for any sample of size 2n we have at most 2n unique centers, so we can bound S, /2, (C)
by (2n)?. Since each function in C., is in C.,,, Sy,/2,(C) < Sa,/2,(C) < (2n)?. Note that
once again the shatter coefficient is independent of dimension. In addition, empirical risk
minimization over C,, can be solved in polynomial time since the brute force algorithm,
which examines all 2n centers and determines the optimal radius for each, has an overall
run time of O(n?(d + logn)).
Now consider an extension of C,, to multiple spheres. We define

q
Czqn = {f : f = UB(LBq(i),Ti), Lq - xnl}

=1
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which is the set of functions corresponding to the union of ¢ closed balls of ¢ possibly
different radii centered at ¢ of the data points z,,, where ¢ < n. To bound the shatter
coefficient for this class recall that the number of dichotomies induced by a single ball placed
at one of the data points is at most 2n. Then we rewrite

q
cd.= U LB li)m)

xqCapn, i=1

where | denotes the union of classes of sets and | | denotes the operation of forming unions
of sets to form new classes. As shown by Devroye et al. (1996, page 219), the shatter
coefficient of A;|J A2 is bounded by the sum of the shatter coefficients of A; and Ay and
the shatter coefficient of A; | | A2 is bounded by the product of the shatter coefficients of A
and As. Consequently, for g balls placed at g points the shattering of 2n points is bounded
by (2n)? and for the (2qn) choices of subsets of size ¢ from 2n points the shatter coefficient
for ¢ balls on 2n points is at most (Zq")(Qn)q < (2n)%4. Therefore Spyan(C) < (2n)%4. Note
that the shatter coefficient remains independent of dimension.

We now discuss a family of multi-sphere classifiers which are obtained by varying the
data dependency. Specifically we consider variants of the g-sphere class where we vary our
specification of the ¢ centers and their radii. The classes we consider include all combinations
where

1. the g centers may be any subset of z,,, or
2. the g centers are a pre-determined subset of z,,,
and
1. a different radius is chosen for each center, or
2. a single radius (same for all centers) must be chosen, or
3. the radii are pre-determined (i.e. fixed ahead of time).

The simplest case is where both the index set of center points and the radii are pre-
determined. This class has only one function and so its shatter coefficient is 1 and its
computational requirements are trivial.

The next level of sophistication is when ¢ = 1. We have already considered the case
where both the center sample index and its radius are variable. The tables below give bounds
on the shatter coefficient and computational requirements for empirical risk minimization
for all combinations with ¢ = 1.

‘ Shatter Coefficient Bounds ¢ =1 ‘

Radius Dependency
Center Index Dependency | Fixed  Variable
Fixed 1 2n
Variable 2n (2n)?
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‘ Computation Bounds ¢ = 1 |

Radius Dependency
Center Index Dependency | Fixed Variable
Fixed 0(1) O(dnlogn)
Variable O(dn?)  O(n%(d +logn))

The next variant we consider is one where the ¢ > 1 center sample indices are fixed and
we allow a single variable radius (the same for each ball). It is easy to show that the shatter
coeflicient for this variation is bounded by 2n, and the empirical error can be minimized
with a brute force algorithm that runs in O(ng(d + logn)) time.

All remaining variants allow either the g > 1 center sample indices to vary or the ¢ > 1
radii to vary. The table below provides a summary of shatter coefficient bounds for these
variants.

‘ Shatter Coefficient Bounds ¢ > 1 ‘

Radius Dependency
Center Index Dependency | Fixed  Variable
Fixed 1 (2n)4
Variable (2n)9 (2n)%

We now show that any variant that requires ¢ > 1 to be determined algorithmically is
NP-Hard. The formal definitions for these problems are stated as prize collecting versions
of the class cover problem (Cannon & Cowen, 200).

Definition 5 (PRIZE COLLECTING CLASS COVER: PC-CC) Given an n-sample
Tn = (Tngs Tny ), (1) € X, a distance function d : X x X — R*, and a positive integer
q < n1. Determine a subset xy C xp, of size q and a set of radii rq, 7,(i) € R, one for
each sample in x4 that minimizes the error

e(2q) = |#n, N Ze| + [n N 2|
where x. is the set of points covered by the q balls,
ze = {an(7) : Fzn, (J) € 24 such that d(z, (i), 2n, (5)) < 0, (J) }
and T = oy, \ T..

Definition 6 (SINGLE RADIUS CLASS COVER: SRCC) This problem is the same
as PC-CLASS COVER except that every sample in x4 is forced to use the same radius, so
only a single radius value must be determined.

Definition 7 (FIXED RADIUS CLASS COVER: FRCC) This problem is the same
as PC-CLASS COVER except that the radii are fized, i.e. a fized set of radii ry,, one for
each sample in x,,, is provided as part of the problem instance, and we must determine
only 4.

Definition 8 (FIXED CENTER CLASS COVER: FCCC) This problem is the same
as PC-CLASS COVER except that the centers are fized, i.e. x4 is provided as part of the
problem instance, and we must determine only rq.

344



MACHINE LEARNING WITH DATA DEPENDENT HYPOTHESIS CLASSES

The last variant presented involves fixing ¢ > 1 centers and algorithmically determining
the corresponding radii. We do not present a hardness proof for this version but conjecture
that even this simple variant is hard for ¢ > 1. The following theorem gives hardness results
for the first three variants.

Theorem 9 PC-CC, SRCC and FRCC are NP-Hard.
Proof Our proofs are by reduction from K-CENTER (Hochbaum, 1997, Section 9.4.1).

Definition 10 (K-CENTER: KC) Given a weighted graph G = (V, E) with |V| = n,
and a positive integer k < n. Let {w; ;} represent the set of shortest path distances between
vertices v; and v; in V. Find a subset of vertices S of size k so that the greatest distance
among all vertices in V' to a nearest vertex in S is minimized. More formally,

min { max minw;;}.
SCV,|S|=k v;eV\S vj €S

We begin with the reduction to PC-CC, and then show how the same reduction can be
used for both SRCC and FRCC as well.

Notice that the value of the objective function will always be one of (Z) possible shortest
path distances. We will generate at most (g) instances of PC-CC. First, order the (g)
distances w; j. Let d;) be the it smallest distance and let € be half of the smallest nontrivial

pairwise difference between the distances,

1
e= min —|dy —dij)
doyig 2"

Now we generate a copy of the weighted graph G(V, E) and color every vertex blue. Add
n red vertices, each with an edge to a corresponding blue vertex that has weight d((;’)) +e.
Note that each blue vertex now has a red vertex whose shortest path distance is d((’;)) +€
and no red vertices closer. The shortest path distances for all vertices in this modified
graph satisfy the properties of a metric and can thus be embedded as points in a Euclidean
space of finite dimension in polynomial time (Young, 1938). These points serve as inputs
to the PC-CC problem where we make a one to one correspondence between the blue (red)
vertices and the points in zp, (%,,). Now set ¢ = k and solve the PC-CC problem. Observe
that this version of PC-CC is trivially solved with zero error.

We repeat the process now using d((g)—1)' The red vertices are now “one step” closer.
This time we have no guarantee of existence of a zero error solution. If the error is zero,
then we repeat the process bringing the red nodes another step closer. We continue until
we reach a PC-CC solution with nonzero error. As soon as this occurs the blue vertices
corresponding to the points z, of the most recent zero error solution provide to an optimal
solution to the original K-CENTER instance. Indeed if this were not the case then any
superior solution to the K-CENTER instance would lead to a zero error solution for the
most current version of PC-CC. If it turns out that all (g) versions of PC-CC have zero
error solutions then at least n — k distances must be the same and the latest (final) solution
is optimal for the k-center problem.
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Hence if we could solve PC-CC in polynomial time, T} cc(no + n1), then we could solve
K-CENTER on n vertices in O(n? - Ts(n) - Te(n) - Tpe—cc(n)) time, where Ti(n) is the time
required to compute the shortest path distances for the modified graph, and T,(n) is the
time required to embed the modified graph into a Euclidean space.

The same reduction can be used to prove hardness for SRCC by noting that at each
step, as we move the red vertices closer, the set of optimal solutions (e.g. points and their
radii) always includes an equal radius solution. For example at the step where dj) is used
to determine the new edge weights for the modified graph, if there is a zero error solution
then there is a zero error solution where the radii for all ¢ blue points are set to d; (at
this radius each of the ¢ blue points covers as many other blue points as possible without
introducing errors). So the reduction works when we substitute SRCC for PC-CC at each
step.

The reduction also works when we substitute FRCC for PC-CC. This follows directly
from the observation that if there is a zero error solution, then there is a zero error solution

whose radii are all d;). This means that we can simply set all the radii in ry, to d(;) and
solve FRCC (instead of PC-CC).

In summary, we have provided bounds on both the structural and computational com-
plexity for a family of spherical classifiers. However, we have not provided a procedure for
selecting the best member from this family. This is the topic of the next section.

5. Structural Risk Minimization

In classification it often not clear what hypothesis space to choose. Vapnik (1998) addressed
this problem by considering a sequence of hypothesis spaces large enough to contain a
good classifier. The structural risk minimization procedure (Vapnik, 1998) is a method
designed to find this good classifier even though classifier complexity of the sequence is
large. We now present a structural risk minimization procedure and prove convergence
for a sequence of data dependent classifier spaces. Although utilized in the construction
of classifiers, we present the analysis in terms of empirical process theory. We consider a
sequence F = {F7,q = 1,....} of data dependent classes F¢. The symbol F used here is the
same as we used for the data dependent class before. However, now the data dependent
classes in the sequence are denoted F? and F is the sequence so there should be no confusion.
We say that F is image admissible Suslin if each F? is. For simplicity of presentation we
set m = 2n. Let S;, denote bounds on the shatter coefficients S, /5, (7). Our method is
similar to that presented by Vapnik (1998) (also see Devroye, Gyorfi, and Lugosi, 1996).
Given a training set z, we select a function fZ from every class FZ which minimizes
empirical mean over the class. From these we select the function f] that minimizes over ¢
the complexity penalized function:

A(f2) = a(fL) +r(q,n)
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where (i is the empirical mean and r(g,n) is the penalty term

log en
r(q,n>=\/2 5 1og(Sym)

nlogn

Let

tiy(2n) fg}gnu(f)

define the function py ,, and

1 (200) = inflim sup gy (2,)
4 n—oo

define the function p5, . If we let the intermediate

M;(Zoo) = limsup M;(Zn)
n—00

define the function py, then
1" (200) = irqlfNZ(ZOO)-

tgn can be extended to a function with the same name on Zy in the obvious way. In
general we make this extension without notice. When we apply this theory to classification
we make use of Equation 4 for the generalization error

’

e(f) =p = f)=p) + po(f)p(0) — p1(f)p(1)

and the corresponding definitions for €} ..,e’ , e’

q,n %00 Cq-
Let SE denote the class of subexponential functions on the positive integers. That is
g € S€ if and only if

Z g(n)e "* < oo

n>0

for all @ > 0. This cLass includes the polynomials, polynomials with logarithms and even
such functions as els»+1, We use the bound from Theorem 3 with m = 2n

n62

PZn( sup ‘M(f) - /l(f)‘ > 6) < 2Sq,n62667 z.
fert,

The proof of the the following structural risk minimization theorem closely resembles a
theorem presented by Devroye et al. (1996, Theorem 18.2). However, because of the data
dependencies, the conditions of the theorem are somewhat different than usual. Let wpl
denote the terminology “with probability 1”.

Theorem 11 Suppose that F is image admissible Suslin and there exists bounds Sy, for
1

the shatter coefficients such that Zq S;f{’ﬂ € 8 and Sy € SE for every q. Let fI
be determined by the structural risk minimization procedure. Then limsup,, . pu(f; ) <

i, wpl.
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5.1 Structural assumptions on F

This structural risk theorem was very general and assumed only that F was image admis-
sible Suslin, but assumed nothing about the relationship between F/i and F72. Although
stronger limit theorems can be made under structural assumptions about F we analyze this
question at present only in terms of u .

5.1.1 z-INCREASING F
Definition 12 We say that F is z-increasing if F%, C FL. when z, C zy for each q.
If F is z-increasing, then limsup,, ., ¢y (2,) = infy, py(2,) and so

1 (200) = infinf i (2,) = infinf inf pu(f)
g n ¢ n feFi,

but since generally inf,, inf, = inf,, , we obtain that

1 (200) = }g]fru(f)

and since p(f} ) > infrer p(f) = p1*(200) we obtain the following much stronger theorem.

Theorem 13 Suppose the data dependent sequence F is z-increasing and image admissible
1

Suslin and there exists bounds Sy, for the shatter coefficients such that Zq S;f{’ﬂ € S€ and
Sqn € SE for every q. Let f be determined by the structural risk minimization procedure.

Then pu(f5,) — infyer p(f) wpl.

An interesting thing also happens to the shatter coefficients.

Lemma 14 Suppose the data dependent class G is z-increasing. Then
Nal(zm, G) < Ni(2m, G)

and

for all n <n < m. In particular,

Sn/m(g) < Sm/m(g)'

Proof The z-increasing assumption G., C G.. when z, C z; implies that
Nolzm, ) = [{{zm (D), o2 ()} OV I 3 f € Gupyywn © 20}

< ‘{{zm(l), (M)} NIyt f € Ga 2 C zm}‘ — Niy(2m, G)

and taking the supremum over z,, finishes the proof. |
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We define the data dependent V' C' dimension of order m as
VCn(G) = max{n : 3z, C 2z, : G, shatters z,}.

In words VO, (G) is the size of the largest subset of some m points which is shattered by
the data dependent class on those m points. The Sauer lemma (Devroye et al., 1996) can
be directly applied. In particular

Sn/m(g) < Sm/m(g) < mVCm(g) +1.

5.1.2 SYMMETRIC F

We say that F is z-symmetric if

q — 14
Tzn - Ta(zn)

for every permutation o of the n points. In this section we will show that when F is z-
symmetric, pu5, is measurable and constant wpl. As we mentioned in the introduction,
such measurability considerations are appropriate through most of this work, but feel these
technicalities would obscure the presentation. However, the following result depends so
critically on measurability assumptions that we include these technicalities here. We now
assume that F is z-symmetric. Before we state the next theorem we need to introduce
some terminology. A universally measurable set in a measurable space is a set M which
is measurable for the completion of every measure. In particular, for each measure v their
exists measurable sets

ACMCB

such that v(A) = v(B). Consequently, we can and will be a little sloppy and say v(M) =
v(A) = v(B) for the universally measurable set M. A universally measurable function
between measurable spaces is one such that the preimage of a measurable set is a universally
measurable set. For a specific measure, we can consider universally measurable sets as
measurable for the completion of the measure (Ash, 1972). Indeed not only do they form a
o-algebra, but it is elementary to show that if {M,,} is a countable collection of universally
measurable sets such that

A, C M, C By,

with v(A,) = v(B,) for each n, then |J,, M,, and [, M,, are both universally measurable,

U4, c|Jm, < B,
(4n € (Mo C () Bn,

v(U, 4n) =v(U, Bn), and v(N, An) = v(), Bn)-

Theorem 15 Suppose that Z is a Suslin space with Borel measure ji. Suppose that the data
dependent sequence F is z-symmetric and image admissible Suslin. Then p%, is universally
measurable and p%, = constant wpl.
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Proof Since F is image admissible Suslin, for fixed ¢, 2 is measurable. Since Zf, is positive
Fubini’s theorem tells us that

p(f(Ty(yn)zn)) = 1 (B (Yns 20, )

is jointly measurable. By the theorem of Sainte-Beuve as presented by Dudley (1999)

pie) = nf p(f)= g p(f(Tyun)-))

is universally measurable on Z,, and extends naturally to a universally measurable function
on Zs,. We work on Z, for the rest of this proof. In particular, for every c the set {y; ,, > c}
is universally measurable. Consequently, there exists measurable sets

such that Pz, (Agn) = Pz, (Bgn). Since F is z-symmetric {u; , > c} is invariant under
permutation of the first n positions in Z,. If we let S denote the upper symmetric
envelope of a set (the union over all permutations of the first n position indices) and S, the
lower symmetric envelope it is clear from the fact that universally measurable sets behave
like measurable sets with respect to unions and intersections that Ag, = S;(4,,) and
Byn = S~ (Bgn) are measurable, symmetric in there first n positions, and

AQan g Aqvn g {Mz,n Z C} g Bq,’n g BQan'
Consequently Pz (Agn) = Pz (Bgn). Now consider
1" (200) = inflimsup gy (2,) = infinf sup g, (2,)
4 n—oo ¢ N p>N

so that
{5 > b= U g = o
¢ N n>N
It is clearly universally measurable and if we define Ax = (), Ny U,sy Agn and Bo =

Ny Ny Un>n Bons

and

Pz (Ax) = Pz, (Bso)-

Since A, is symmetric in its first n components, |J, -y Aqn is symmetric in the first
N. Consequently, My U,>y Agn 1s symmetric for any finite permutation and the same is
true for A,,. This argument works just as well for Bs,. Therefore both A, and By, are
measurable and symmetric. By the Hewitt-Savage Zero-One law (Shiryaev, 1980)

Pzo(Ax) =Pz (Bs) =0o0r 1
and the proof is finished. |

Consequently, when F is both z-symmetric and z-increasing we obtain that p(f ) converges
to pi, = infrer pu(f) wpl and that pf, = infrcr pu(f) = constant wpl.

Note that in the course of proving this theorem we have shown that for a fixed sym-
metric image admissible Suslin data dependent class, the limit p%, = limsup,_, ., 1*(25) is
constant wpl .
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5.2 Structural risk minimization for multi-sphere classifiers

When the structural risk minimization theorem is applied it would be very nice to be able
to characterize ) . For example, when is p%  the minimum value over the unconstrained
sequence UF = qun,zne A F2 wpl? We can provide no general facts in this regard at
present but in the this section we show that this is true for multi-sphere classifiers. We
first show that e’ is the Bayes optimal and then show we can apply the Structural Risk
Minimization Theorem 13. The analysis below works for closed or open balls, balls all of
the same radii, and when the complements of the union of the balls is included in the class
of functions.

Theorem 16 Consider the data dependent multi-sphere classifiers on a Polish space X
with Borel measure v on Z = (X,{0,1}). Let ep denote the Bayes error. Let the structural
risk minimization procedure be applied with Sg, = (2n)%¢ to produce the classifier fi . Then

e(fr) =2 es wpl.

Proof

To prove this theorem we have to do two things. The first is to show that e} is
universally measurable and that e’ = ep wpl. The second is to show that we can apply
the Structural Risk Minimization Theorem 13. We now proceed with the first.

Lemma 17 Consider a Borel measurable random variable Z = (X,{0,1}) with X Polish
and Borel measure ji. Then for the data dependent multi-sphere classifiers, €5 is universally
measurable and e, = ep wpl.

Proof We now show that for the multi-sphere classifiers that the evaluation function =9
is jointly measurable for each ¢. The data dependent classes C of functions on Z are the
data dependent classes Uq<n C? where Ci# is the set of functions on X which are one on
the union of a set of ¢ balls placed on the x component of the data samples. It is clear
that C is both z-symmetric and z-increasing. Consider the class B, for a fixed set of q
points z,. We define the parameter space of radii W, = §Ri and the parameterization that
Ty, (wg)(2) = maxi<i<g ljp—u,(i)|<w,(i) Where I is the indicator function. For each i the
set ;4. (i)|<w,(i) 18 closed and so measurable in Wy, Z;, X. Consequently the evaluation
function

El(wg, 2q, X) = Ty, (wq)(2) = max g — g (i) | <wq ()

is jointly measurable. Since the measurable sets are closed under complement, the evaluation
function for the class corresponding to the functions on Z is measurable on W, Z% Z.
Consequently, the conditions of Theorem 15 are satisfied and so e is universally measurable
and e} is constant wpl. What is left is to show that this constant is eg.

To this end note that

so that

Now we prove that
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wpl which will then finish the proof. The idea is as follows. We keep an eye on the
generalization error (Equation 4) e(f) = p(1) + po(f)p(0) — p1(f)p(1) and show that for
any f we can use a data dependent placement of balls to form a classifier f* such that
o (f*) is never much larger than po(f) while at the same time show that for large enough
n with high probability p1(f*) is not much smaller than uq(f). For the first part we utilize
the continuity of the measure of a decreasing family of measurable sets and for the second
the fact that the measure of a measurable set on a Polish space can be approximated from
below by the measure of compact measurable sets. This compactness allows us to show that
with high probability the randomly placed set of balls will have pq measure not too much
smaller than that of f. Consequently from the generalization error formula we see that with
high probability we can control the increase in generalization error over the generalization
error of any measurable set through a random placement of balls. We now carry out the
details.
Let €; > 0. Then there exists a measurable f, such that

e(fe,) < e +e1. (5)

Since X is Polish it follows (see e.g. Ash, 1972) that f., can be approximated from below
by compact sets. That is, given any e > 0 there is a compact he, < fe, such that

Ml(fel)_62 Sﬂl(hm) Sul(fq)' (6)

Since it is compact, for any covering of h., of open balls B;* of radius ez there is a finite
subcovering. From this subcovering choose the positive measure subcovering such that
p1(B;?) > 0 for each ball in the subcover. Note that the positive measure subcover is not
really a covering. However ;1 (|J B;*) > p1(he,) for the positive measure subcover. Consider
the classifier f2¢3 € F,, which places closed balls B of radius 2e3 at each of the data
points which satisfy he,(x) = 1. The triangle inequality implies that

B (z) 5 B

whenever € B so that if the sample 2, has at least one point in every ball B;® of the
positive measure subcover, then ffsfi > he, and so

p(f22) > pa(hey)- (7)

From Equation 6 we see that for e2 < p1(fe,), p1(he,) > 0 and since the positive measure
subcover is finite we know then for large enough n with high probability there will be at
least one point in every ball. That is, given an €4 > 0 there exists an M (e4) such that

Pz (Ml(fzz,fB) > M1(h62)) >1—¢

for all n > M(e4). Now f2¢ < Ny, (he,) where N(A) is the set of all points at distance
less that or equal to € from the set A. Consequently, ,uo(ffs?’) < 1p(Naeg (he,)) and so
po(f2¢3) < 119(Naey (fey))- Since in addition, pi1(he,) > p1(fe,) — €2, if we put this together
in the generalization formula we obtain

P (e(22) < elfer) + p(0) (0(Naey (her)) = ro(hcy))

+2(0) (10(hes) = polfer) ) +p(1)(e2) ) > 1= e
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Since e(fe,) < e + €1 and h,, < fe, we further obtain

Pz (€(£2%) < €6 + 1 4+ p(0) (0 (Naey () = po(hes) ) +p(1)(e2)) = 1= ea.

Since €*(z,) < e(f2°3) we obtain

Pr.(en < e + €1+ p(0) (110 (Naey (he)) = io(hes) ) + p(1)(e2)) > 1 — 4

where, as before, since we know that e,, is universally measurable the probability statement
is for the probability of the two measurable sets that trap the event. The proof of Theo-
rem 15 showed that the limit of a decreasing sequence of universally measurable sets was
universally measurable and that the probability of the limit is the limit of the sequence of
probabilities. Consequently,

Pz (e < e+ €1 +p(0) (10(Naes (her)) = polher) ) +p(1)(e2) ) = 1.

Since a metric space is Hausdorff, the compact set h, is closed and so the 1io(No, (he,))
converges to pg(he,) as €3 goes to zero. Consequently we can choose €3 small enough so
that

Pz, (e’go <ep+e€ +€2) =1.

Letting €2 and €1 go to zero, we obtain
Pz, (e’go < 63> =1

and the proof is finished. [ ]

We have already shown C to be image admissible Suslin and have observed that it is
also both z-symmetric and z-increasing. From Theorems 13,15, and Lemma 17 all that
is left is to show that the bound on the shatter coefficient S, , satisfies the conditions of
Theorem 13. In Section 4.2 we showed that S, /2, (C9) < (2n)21. Thus, a direct calculation
with Sg, = (2n)¢ shows that the conditions of Theorem 13 are satisfied. We note that
these shattering bounds are dimension independent, whereas if the balls could be located
anywhere this would not be the case.

[ |

6. A framework for classification

The empirical process results in the preceding sections form the basis of a new framework
to analyze the performance of statistical learning paradigms. In this framework classifier
design is decomposed into two components; the first component is the restriction to the data
dependent hypothesis class and the second is empirical risk minimization within that class.
Analysis within this framework involves the the study of the decomposition induced on
both error and computation. There are several goals we might hope to accomplish with this
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framework: tighter performance bounds for existing learning paradigms, simpler (or more
elegant) proofs, greater flexibility in the analysis, and the discovery of new mechanisms for
controlling error and/or computation (which may lead to new learning paradigms). In this
section we discuss progress along these fronts using the VC framework as a benchmark for
comparison. Specifically, we make comparisons between error bounds for traditional classes
C, and their data dependent counterparts C, where the data dependency is introduced in
different ways. A natural way of defining a data dependent class is to impose a constraint
on a traditional class C' to obtain C,,. If this is not the case we define C' = U, C,, as the
traditional hypothesis class.

We now examine the structure of the induced error decomposition. It is common to
break the generalization error into two components, approximation error and estimation
error, which are defined as follows. The approximation error for C' is

A= inf e(f) -
L els) = e

and the estimation error is
E=e(f)—infe
(F) = int e(f)
where f € C minimizes the empirical error.
The approximation error for the data dependent class C is

Ap = inf —
D fleféme(f) es

and the estimation error is R
Ep=e(f)— inf e
D =e(f) st ()
where f € C., minimizes the empirical error. The data dependent approximation error Ap
splits into
Ap =A+ Epp

where the data dependency error is

o0 = B, AN et

Consequently we see the increase in approximation error due to data dependency. The data
dependent estimation error splits into

Ep =E - Epp +e(f) —e(f)

giving
Ap+Ep=A+E+e(f) —e(f).
The right hand side shows the possible benefits of data dependent learning which we analyze
through the terms on the left hand side.
Analysis of the data dependent approximation error is similar to that for traditional
classifiers, except for the data dependency error term. Our treatment of this random variable
has just begun. We have shown that its infinite sample limit is constant when the data
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dependency is symmetric in its dependence on the n-sample. Although we have provided
no general conditions on the data dependency that allow computation of this constant, we
have shown that it is zero when we employ the structural risk minimization over multi-
sphere classifiers as described in Section 5.2. In this case we have also shown that the
infinite sample limit of the data dependent approximation error is zero.

In both the traditional and data dependent theory estimation error is controlled in terms
of the shatter coefficient. While the traditional theory uses the Sauer lemma to provide a
simple bound for the shatter coefficient in terms of the VC dimension (Devroye et al., 1996)
we have discovered no such simplification in the data dependent case. Indeed, we have
not yet found a way to bound the shatter coefficient in terms of general characteristics of
the data dependent class. In fact we suspect incorporation of the expectation process in
the shatter bounds will become important. Such an approach leads to problems in the
field of probabilistic geometry (Ambartzumian, 1990). However, there are few distribution
independent results in this field, the most notable exception being the result of Rogers
(1978) concerning the probability that the convex hulls of two samples do not intersect.
Although relevant, we have been unable to extend it to more than two dimensions.

We argue that the change in shatter coefficient due to data dependency may not always
be significant. Let C be a finite VC class and let the corresponding data dependent class
be the subset of C' that achieves the minimum empirical error on the n-sample,

~

Con ={f+ [ = argmine(f)}
Since C,, C C'it is clear that S, 2,(C) is less than or equal to the shatter coefficient S(n,C)
of C, but the question is whether S, /5, (C) is sufficiently smaller (uniformly) to guarantee a
reduction in estimation error. The existence of lower bounds on the generalization error for
empirical error minimization (Devroye et al., 1996; Vapnik, 1998) that closely match the
upper bounds with which we wish to compare suggest not.

We now discuss examples where the improvement is significant. We begin by consider-
ing the sphere classifiers where the multi-sphere class is restricted to a single sphere. The
traditional class C, whose center and radius are unrestricted, can be represented as a gen-
eralized linear classifier with VC dimension < d+ 2 (Cover, 1965) (where d is the dimension
of the sample space) and so has shatter coefficient S(n,C) < n?t2. Forcing the sphere to
be centered at a data point represents a clear restriction on the function class. Note that
traditional VC theory accounts for the reduction in complexity that results from placing the
center at any fixed location. Indeed, in this case S(n,C) < n, but the center location must
be chosen before we see the data. On the other hand, a data dependent framework like
the one in this paper is required if we wish to account for the reduction in complexity that
results from centering the sphere at a data point. We have shown that S, /5,(C) < (2n)?
which demonstrates that the complexity reduction is manifested in a shattering bound that
is independent of dimension. While this class restriction may give tighter control on the
estimation error, it is likely to increase the approximation error. However, the dimension
independent nature of the estimation error allows us to employ methods for reducing ap-
proximation error that were not previously available to us. For example we can map to a
higher dimensional space and implement the single sphere classifier there (in much the same
way we do with support vector machines). This can be accomplished in a computationally
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efficient way through the use of a kernel to compute distances (Schélkopf, 2001). Finally
we note that forcing the sphere to be centered at a data sample gives rise to a significant
reduction in the computational requirements for learning. Computing the optimal position
and radius of a single ball is NP-Hard (Johnson & Preparata, 1978), but determining the
optimal center sample and its radius can be accomplished in (low order) polynomial time
(e.g. the brute force algorithm runs in O(dn?logn) time). In summary, the data dependent
framework has allowed us to quantify the reduction in class complexity obtained by forcing
the ball to be centered at a data point, provided dimension independent error bounds, and
consequently led us to consider a new learning paradigm that is computationally tractable.
Similar conclusions can be drawn for the set of simple linear classifiers introduced in Section
4.1.

It is possible that the significant decrease in estimation error in these examples is coun-
tered by a large increase in approximation error. However, we can reduce the approximation
error substantially by using multiple balls (or linear classifiers). For example we consider
variations of the ¢-sphere classifiers introduced in Section 4.2. Theorem 16 tells us that
under very general conditions we can drive the approximation (and estimation) error to
zero asymptotically (wp?). In practice, where ¢ and n are finite, since the estimation error
bounds remain independent of dimension, we can combine the technique of mapping to a
higher dimension through a kernel with multiple balls to help reduce approximation error.
While this is an attractive idea, computational requirements may limit its utility. Theorem
9 states that the problem of finding the best ¢ out of n balls and their radii is NP-Hard
1. Consequently it may be beneficial to consider variations of the data dependent class CZ,
that allow us to trade approximation and/or estimation error for computational resources.

For example suppose we restrict C by either fixing the radii or fixing the subset of
the samples where the balls are centered. These restrictions lead to a natural reduction
in the shatter coefficient for the corresponding data dependent class as shown is Section
4.2. Note however, that when we fix the subset where the balls are centered symmetry is
violated and the infinite sample limit of the data dependent optimal generalization error
may not be constant (see the proof of Theorem 15). While these variations may remain
NP-Hard(see Section 4.2) it is possible that they admit a polynomial time approximation
that is acceptable for use in practice. They may also be solved by an algorithm whose
expected (or typical) run time is polynomial.

Finally, we obtain a computationally tractable variant of this problem by fixing the ¢
samples where the balls are centered and employ a single radius (the same for each ball)
that is chosen to minimize the empirical error.

In summary, we have introduced a new framework which, although incomplete, has
demonstrated its utility by allowing us to more thoroughly quantify the trade-offs between
performance and computational complexity, and has lead to the discovery of new families
of classifiers with dimension independent performance bounds and efficient learning proce-
dures.

1. Note that since there are at most (;’) = O(n?) choices for the center points, and for each of these no
more than n? choices for the radii, the problem is polynomial for fixed ¢. Even so, it is not practical for
¢ greater than about 3.
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